Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
ACS Pharmacol Transl Sci ; 7(2): 478-492, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38357283

RESUMO

Functional selectivity in the context of serotonin 2A (5-HT2A) receptor agonists is often described as differences psychedelic compounds have in the activation of Gq vs ß-arrestin signaling in the brain and how that may relate to inducing psychoactive and hallucinatory properties with respect to each other. However, the presence of 5-HT2A receptors throughout the body in several cell types, including endothelial, endocrine, and immune-related tissues, suggests that functional selectivity may exist in the periphery as well. Here, we examine functional selectivity between two 5-HT2A receptor agonists of the phenylalkylamine class: (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI] and (R)-2,5-dimethoxy-4-trifluoromethylamphetamine [(R)-DOTFM]. Despite comparable in vitro activity at the 5-HT2A receptor as well as similar behavioral potency, (R)-DOTFM does not exhibit an ability to prevent inflammation or elevated airway hyperresponsiveness (AHR) in an acute murine ovalbumin-induced asthma model as does (R)-DOI. Furthermore, there are distinct differences between protein expression and inflammatory-related gene expression in pulmonary tissues between the two compounds. Using (R)-DOI and (R)-DOTFM as tools, we further elucidated the anti-inflammatory mechanisms underlying the powerful anti-inflammatory effects of certain psychedelics and identified key mechanistic components of the anti-inflammatory effects of psychedelics, including suppression of arginase 1 expression.

2.
Nature ; 626(7997): 194-206, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096902

RESUMO

The LINE-1 (L1) retrotransposon is an ancient genetic parasite that has written around one-third of the human genome through a 'copy and paste' mechanism catalysed by its multifunctional enzyme, open reading frame 2 protein (ORF2p)1. ORF2p reverse transcriptase (RT) and endonuclease activities have been implicated in the pathophysiology of cancer2,3, autoimmunity4,5 and ageing6,7, making ORF2p a potential therapeutic target. However, a lack of structural and mechanistic knowledge has hampered efforts to rationally exploit it. We report structures of the human ORF2p 'core' (residues 238-1061, including the RT domain) by X-ray crystallography and cryo-electron microscopy in several conformational states. Our analyses identified two previously undescribed folded domains, extensive contacts to RNA templates and associated adaptations that contribute to unique aspects of the L1 replication cycle. Computed integrative structural models of full-length ORF2p show a dynamic closed-ring conformation that appears to open during retrotransposition. We characterize ORF2p RT inhibition and reveal its underlying structural basis. Imaging and biochemistry show that non-canonical cytosolic ORF2p RT activity can produce RNA:DNA hybrids, activating innate immune signalling through cGAS/STING and resulting in interferon production6-8. In contrast to retroviral RTs, L1 RT is efficiently primed by short RNAs and hairpins, which probably explains cytosolic priming. Other biochemical activities including processivity, DNA-directed polymerization, non-templated base addition and template switching together allow us to propose a revised L1 insertion model. Finally, our evolutionary analysis demonstrates structural conservation between ORF2p and other RNA- and DNA-dependent polymerases. We therefore provide key mechanistic insights into L1 polymerization and insertion, shed light on the evolutionary history of L1 and enable rational drug development targeting L1.


Assuntos
Endonucleases , Elementos Nucleotídeos Longos e Dispersos , DNA Polimerase Dirigida por RNA , Transcrição Reversa , Humanos , Microscopia Crioeletrônica , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Elementos Nucleotídeos Longos e Dispersos/genética , RNA/genética , DNA Polimerase Dirigida por RNA/química , DNA Polimerase Dirigida por RNA/genética , DNA Polimerase Dirigida por RNA/metabolismo , Cristalografia por Raios X , DNA/biossíntese , DNA/genética , Imunidade Inata , Interferons/biossíntese
3.
Artigo em Inglês | MEDLINE | ID: mdl-38072874

RESUMO

5-MeO-DMT is a tryptamine being developed as a potential antidepressant that may display a distinct therapeutic mechanism due to its unique pharmacology and subjective effects compared to typical psychedelics. In this article, we parallel the relatively distinct phenomenology and behavioral effects of the acute and post-acute effects of 5-MeO-DMT to those induced by epileptiform activity, particularly in instances within epileptogenic zones of the temporal lobes. This is done by reviewing aberrant 5-HT1A receptor functioning in epilepsy, noting that 5-MeO-DMT has notable 5-HT1A receptor agonist properties-and then comparing the acute behavioral and subjective effects induced by 5-MeO-DMT to those that occur in seizures. It might be that 5-MeO-DMT's therapeutic mechanism is partly mediated by evoking temporary epileptiform activity, suggesting a similarity to electroconvulsive therapy. It is also noted that "reactivations," the sudden re-experiencing of drug effects common after 5-MeO-DMT but not after typical psychedelics, may suggest that 5-MeO-DMT produces recurrent epileptiform activity. Overall, this review indicates that further evaluation of 5-MeO-DMT's unique mechanisms in research settings and among naturalistic users are warranted.

4.
Holist Nurs Pract ; 37(5): E75-E82, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37595124

RESUMO

Yin-yang theorizes that everything in the world is interoppositionally unified with 2 dynamic opposites (yin and yang), interrooted, interchangeable, and interconvertible. Tai chi (TC) movements and postures are essentially yin-yang concept-based. However, there is still a lack of understanding of yin-yang concepts and applications among people practicing TC. So, in this concept review, we aimed to provide basic understanding of the yin-yang concept and characteristics behind TC practice. Terms derived from the yin-yang concept in TC practice may include blood/qi (energy), stability/mobility, closing/opening moves, expiration/inspiration, solid/empty stance, and defensive/offensive hand movements and postures. These yin-yang attributes are interrestricted and dependent on maintaining a dynamic mind-body harmony. With the yin-yang application, TC can be considered a self-controlled balance perturbation exercise to challenge the stability-mobility (yin-yang) to a new level of harmony. As a health promotion holistic intervention, TC can facilitate the flow in blood/qi pathways or meridians to improve medical conditions. As an integrative mind-body exercise, TC can activate different body parts and brain regions to participate in and coordinate the combined physical and mental activities.


Assuntos
Meridianos , Tai Chi Chuan , Humanos , Yin-Yang , Terapia por Exercício , Promoção da Saúde
5.
Neuropharmacology ; 231: 109504, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921889

RESUMO

Psychedelic compounds have shown extraordinary potential in treating a wide range of neuropsychiatric disorders. Psilocybin, for example, has now been shown in several clinical trials to induce a rapid (within days) and persistent (3-12 months) improvement in human treatment-resistant depression and other neuropsychiatric conditions. Here we review the preclinical models and experimental approaches that have been used to study the neurobiological actions of psychedelic drugs. We further summarize the insights these studies have provided into the possible mechanisms underlying the induction of their therapeutic actions, including the receptors to which psychedelics bind and the second messenger signaling cascades that they activate. We also discuss potential biological processes that psychedelics may alter to produce the lasting amelioration of symptoms, including improvements in synaptic structure and function and suppression of inflammation. Improved mechanistic understanding of psychedelic drug actions will aid in the advancement of these promising new medicines. This article is part of the Special Issue on "National Institutes of Health Psilocybin Research Speaker Series".


Assuntos
Transtorno Depressivo Resistente a Tratamento , Alucinógenos , Estados Unidos , Humanos , Psilocibina/farmacologia , Psilocibina/uso terapêutico , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Inflamação/tratamento farmacológico
6.
Genes Brain Behav ; 22(2): e12840, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36807494

RESUMO

Stress is associated with contextual memory deficits, which may mediate avoidance of trauma-associated contexts in posttraumatic stress disorder. These deficits may emerge from impaired pattern separation, the independent representation of similar experiences by the dentate gyrus-Cornu Ammonis 3 (DG-CA3) circuit of the dorsal hippocampus, which allows for appropriate behavioral responses to specific environmental stimuli. Neurogenesis in the DG is controlled by mitochondrial reactive oxygen species (ROS) production, and may contribute to pattern separation. In Experiment 1, we performed RNA sequencing of the dorsal hippocampus 16 days after stress in rats that either develop conditioned place avoidance to a predator urine-associated context (Avoiders), or do not (Non-Avoiders). Weighted genome correlational network analysis showed that increased expression of oxidative phosphorylation-associated gene transcripts and decreased expression of gene transcripts for axon guidance and insulin signaling were associated with avoidance behavior. Based on these data, in Experiment 2, we hypothesized that Avoiders would exhibit elevated hippocampal (HPC) ROS production and degraded object pattern separation (OPS) compared with Nonavoiders. Stress impaired pattern separation performance in Non-Avoider and Avoider rats compared with nonstressed Controls, but surprisingly, Avoiders exhibited partly preserved pattern separation performance and significantly lower ROS production compared with Non-Avoiders. Lower ROS production was associated with better OPS performance in Stressed rats, but ROS production was not associated with OPS performance in Controls. These results suggest a strong negative association between HPC ROS production and pattern separation after stress, and that stress effects on these outcome variables may be associated with avoidance of a stress-paired context.


Assuntos
Hipocampo , Transtornos de Estresse Pós-Traumáticos , Ratos , Animais , Espécies Reativas de Oxigênio/farmacologia , Hipocampo/metabolismo , Região CA3 Hipocampal/metabolismo , Aprendizagem da Esquiva/fisiologia , Giro Denteado/metabolismo
7.
Biochem Pharmacol ; 206: 115317, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36374715

RESUMO

G protein-coupled receptors (GPCR) and receptor tyrosine kinases (RTK) modulate vascular tone and contraction via rapid and long-term processes. Sustained activation of these receptor types can change vascular structure, and the ability of vasculature to adapt to high pressure. In this study, the interaction between serotonin (5-HT) receptors and epidermal growth factor receptors (EGFR) on vasoconstriction and the mechanisms of EGFR transactivation and its downstream mediators were investigated. We measured 5-HT-induced vasoconstriction in the aorta and the mesenteric artery; and the effects of EGFR, Src and PI3K, and their downstream mediators Erk1/2 and Akt phosphorylation on 5-HT-mediated vasoconstriction in the presence or absence of pharmacological inhibitors of Ca2+/CaM, EGFR, Src, and PI3K. Furthermore, we determined the contribution of 5-HT receptor subtypes to 5-HT-induced vasoconstriction and EGFR transactivation using selective 5-HT2A and 5-HT1B receptors ligands. Our results show that EGFR, Src, and PI3K are involved in 5-HT-induced vasoconstriction both in the aorta and the mesenteric artery, and that these kinases have a more prominent role in the mesenteric artery than the aorta. With regard to EGFR transactivation by 5-HT, Ca2+/CaM, Src and PI3K are upstream mediators, and transactivation is partly mediated by Erk1/2 and Akt activation. Furthermore, Ca2+/CaM, Src, and PI3K are the main regulators for Akt activation, however Src only has a prominent role for Erk1/2 activation. 5-HT2A and 5-HT1B receptors have different EGFR transactivation profiles through Src and/or PI3K, with 5-HT2A having a greater role than 5-HT1B receptors.


Assuntos
Receptores ErbB , Quinases da Família src , Quinases da Família src/metabolismo , Receptores ErbB/metabolismo , Vasoconstrição/fisiologia , Serotonina/farmacologia , Serotonina/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 5-HT1B de Serotonina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ativação Transcricional , Fosforilação
8.
Neuropharmacology ; 218: 109220, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987353

RESUMO

New medicines containing classic hallucinogenic and entactogenic psychedelic substance are under development for various psychiatric and neurological disorders. Many of these, including psilocybin, lysergic acid diethylamide (LSD), and 3,4-methylenedioxymethamphetamine (MDMA) are Schedule I controlled substances of the United States Controlled Substances Act (US CSA), and similarly controlled globally. The implications of the CSA for research and medicines development, the path to approval of medicines, and their subsequent removal from Schedule I in the US are discussed. This entire process occurs within the framework of the CSA in the US and its counterparts internationally in accordance with international drug control treaties. Abuse potential related research in the US informs the eight factors of the CSA which provide the basis for rescheduling actions that must occur upon approval of a drug that contains a Schedule I substance. Abuse-related research also informs drug product labeling and the risk evaluation and mitigation strategies (REMS) will likely be required for approved medicines. Human abuse potential studies typically employed in CNS drug development may be problematic for substances with strong hallucinogenic effects such as psilocybin, and alternative strategies are discussed. Implications for research, medicinal development, and controlled substance scheduling are presented in the context of the US CSA and FDA requirements with implications for global regulation. We also discuss how abuse-related research can contribute to understanding mechanisms of action and therapeutic effects as well as the totality of the effects of the drugs on the brain, behavior, mood, and the constructs of spirituality and consciousness.


Assuntos
Alucinógenos , Transtornos Relacionados ao Uso de Substâncias , Substâncias Controladas , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Dietilamida do Ácido Lisérgico/farmacologia , Dietilamida do Ácido Lisérgico/uso terapêutico , Psilocibina/uso terapêutico , Transtornos Relacionados ao Uso de Substâncias/tratamento farmacológico , Estados Unidos
10.
Proc Natl Acad Sci U S A ; 119(27): e2200260119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771941

RESUMO

Human endogenous retroviruses (HERVs) comprise nearly 8% of the human genome and are derived from ancient integrations of retroviruses into the germline. The biology of HERVs is poorly defined, but there is accumulating evidence supporting pathological roles in diverse diseases, such as cancer, autoimmune, and neurodegenerative diseases. Functional proteins are produced by HERV-encoded genes, including reverse transcriptases (RTs), which could be a contributor to the pathology attributed to aberrant HERV-K expression. To facilitate the discovery and development of HERV-K RT potent and selective inhibitors, we expressed active HERV-K RT and determined the crystal structure of a ternary complex of this enzyme with a double-stranded DNA substrate. We demonstrate a range of RT inhibition with antiretroviral nucleotide analogs, while classic nonnucleoside analogs do not inhibit HERV-K RT. Detailed comparisons of HERV-K RT with other known RTs demonstrate similarities to diverse RT families and a striking similarity to the HIV-1 RT asymmetric heterodimer. Our analysis further reveals opportunities for selective HERV-K RT inhibition.


Assuntos
Antirretrovirais , Descoberta de Drogas , Retrovirus Endógenos , DNA Polimerase Dirigida por RNA , Inibidores da Transcriptase Reversa , Antirretrovirais/química , Antirretrovirais/farmacologia , Retrovirus Endógenos/enzimologia , Retrovirus Endógenos/genética , Genes Virais , Transcriptase Reversa do HIV/química , Humanos , Multimerização Proteica , DNA Polimerase Dirigida por RNA/química , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/farmacologia
11.
J Neurochem ; 162(1): 7-8, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35699130

RESUMO

Psychedelics are a relatively recent field of research that had not gained much support half a century ago, yet it developed into a much acknowledged, highly relevant field that extends to many people's lives. Psychedelics have demonstrated profound and durable therapeutic potential for the treatment of several psychiatric disorders including depression, anxiety, and substance use disorders, among others. In this special issue, basic science of psychedelics is reviewed with respect to fundamental cellular, molecular, and genetic mechanisms, all the way up to the human systems level with clinical reviews. We hope the articles, authored by leading scientists in their field, will help to understand better the role of the serotonin 5-HT2A receptor in particular in healthy and diseased brain function.


Assuntos
Alucinógenos , Neuroquímica , Transtornos Relacionados ao Uso de Substâncias , Ansiedade , Alucinógenos/uso terapêutico , Humanos
12.
Curr Top Behav Neurosci ; 56: 229-245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546383

RESUMO

The serotonin (5-hydroxytryptamine, 5-HT) 2A receptor is most well known as the common target for classic psychedelic compounds. Interestingly, the 5-HT2A receptor is the most widely expressed mammalian serotonin receptor and is found in nearly every examined tissue type including neural, endocrine, endothelial, immune, and muscle, suggesting it could be a novel and pharmacological target for several types of disorders. Despite this, the bulk of research on the 5-HT2A receptor is focused on its role in the central nervous system (CNS). Recently, activation of 5-HT2A receptors has emerged as a new anti-inflammatory strategy. This review will describe recent findings regarding psychedelics as anti-inflammatory compounds, as well as parse out differences in functional selectivity and immune regulation that exist between a number of well-known hallucinogenic compounds.


Assuntos
Alucinógenos , Animais , Anti-Inflamatórios/farmacologia , Alucinógenos/farmacologia , Mamíferos , Modelos Animais , Receptor 5-HT2A de Serotonina , Serotonina
13.
Front Microbiol ; 13: 859866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35391733

RESUMO

Herpes simplex virus-associated diseases are a complex interaction between cytolytic viral replication and inflammation. Within the normally avascular and immunoprivileged cornea, HSV ocular infection can result in vision-threatening immune-mediated herpetic keratitis, the leading infectious cause of corneal blindness in the industrialized world. Viral replicative processes are entirely dependent upon numerous cellular biosynthetic and metabolic pathways. Consistent with this premise, HSV infection was shown to profoundly alter gene expression associated with cellular amino acid biosynthetic pathways, including key tryptophan metabolism genes. The essential amino acid tryptophan is crucial for pathogen replication, the generation of host immune responses, and the synthesis of neurotransmitters, such as serotonin. Intriguingly, Tryptophan hydroxylase 2 (TPH2), the neuronal specific rate-limiting enzyme for serotonin synthesis, was the most significantly upregulated gene by HSV in an amino acid metabolism PCR array. Despite the well-defined effects of serotonin in the nervous system, the association of peripheral serotonin in disease-promoting inflammation has only recently begun to be elucidated. Likewise, the impact of serotonin on viral replication and ocular disease is also largely unknown. We therefore examined the effect of HSV-induced serotonin-associated synthesis and transport pathways on HSV-1 replication, as well as the correlation between HSV-induced ocular serotonin levels and disease severity. HSV infection induced expression of the critical serotonin synthesis enzymes TPH-1, TPH-2, and DOPA decarboxylase (DDC), as well as the serotonin transporter, SERT. Concordantly, HSV-infected cells upregulated serotonin synthesis and its intracellular uptake. Increased serotonin synthesis and uptake was shown to influence HSV replication. Exogenous addition of serotonin increased HSV-1 yield, while both TPH-1/2 and SERT pharmacological inhibition reduced viral yield. Congruent with these in vitro findings, rabbits intraocularly infected with HSV-1 exhibited significantly higher aqueous humor serotonin concentrations that positively and strongly correlated with viral load and ocular disease severity. Collectively, our findings indicate that HSV-1 promotes serotonin synthesis and cellular uptake to facilitate viral replication and consequently, serotonin's proinflammatory effects may enhance the development of ocular disease.

14.
ACS Chem Neurosci ; 13(2): 257-274, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34990116

RESUMO

Post-traumatic stress disorder (PTSD) is associated with cognitive deficits, oxidative stress, and inflammation. Animal models have recapitulated features of PTSD, but no comparative RNA sequencing analysis of differentially expressed genes (DEGs) in the brain between PTSD and animal models of traumatic stress has been carried out. We compared DEGs from the prefrontal cortex (PFC) of an established stress model to DEGs from the dorsolateral PFC (dlPFC) of humans. We observed a significant enrichment of rat DEGs in human PTSD and identified 20 overlapping DEGs, of which 17 (85%) are directionally concordant. N,N-dimethyltryptamine (DMT) is a known indirect antioxidant, anti-inflammatory, and neuroprotective compound with antidepressant and plasticity-facilitating effects. We tested the capacity of DMT, the monoamine oxidase inhibitor (MAOI) harmaline, and "pharmahuasca" (DMT + harmaline) to reduce reactive oxygen species (ROS) production and inflammatory gene expression and to modulate neuroplasticity-related gene expression in the model. We administered DMT (2 mg/kg IP), harmaline (1.5 mg/kg IP), pharmahuasca, or vehicle every other day for 5 days, following a 30 day stress regiment. We measured ROS production in the PFC and hippocampus (HC) by electron paramagnetic resonance spectroscopy and sequenced total mRNA in the PFC. We also performed in vitro assays to measure the affinity and efficacy of DMT and harmaline at 5HT2AR compared to 5-HT. DMT and pharmahuasca reduced ROS production in the PFC and HC, while harmaline had mixed effects. Treatments normalized 9, 12, and 14 overlapping DEGs, and pathway analysis implicated that genes were involved in ROS production, inflammation, growth factor signaling, neurotransmission, and neuroplasticity.


Assuntos
N,N-Dimetiltriptamina , Transtornos de Estresse Pós-Traumáticos , Animais , Córtex Pré-Frontal Dorsolateral , Humanos , Ratos , Espécies Reativas de Oxigênio , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Estresse Psicológico/tratamento farmacológico
15.
J Neurochem ; 162(1): 89-108, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34519052

RESUMO

The studies of psychedelics, especially psychedelic tryptamines like psilocybin, are rapidly gaining interest in neuroscience research. Much of this interest stems from recent clinical studies demonstrating that they have a unique ability to improve the debilitating symptoms of major depressive disorder (MDD) long-term after only a single treatment. Indeed, the Food and Drug Administration (FDA) has recently designated two Phase III clinical trials studying the ability of psilocybin to treat forms of MDD with "Breakthrough Therapy" status. If successful, the use of psychedelics to treat psychiatric diseases like depression would be revolutionary. As more evidence appears in the scientific literature to support their use in psychiatry to treat MDD on and substance use disorders (SUD), recent studies with rodents revealed that their therapeutic effects might extend beyond treating MDD and SUD. For example, psychedelics may have efficacy in the treatment and prevention of brain injury and neurodegenerative diseases such as Alzheimer's Disease. Preclinical work has highlighted psychedelics' ability to induce neuroplasticity and synaptogenesis, and neural progenitor cell proliferation. Psychedelics may also act as immunomodulators by reducing levels of proinflammatory biomarkers, including IL-1ß, IL-6, and tumor necrosis factor-α (TNF-α). Their exact molecular mechanisms, and induction of cellular interactions, especially between neural and glial cells, leading to therapeutic efficacy, remain to be determined. In this review, we discuss recent findings and information on how psychedelics may act therapeutically on cells within the central nervous system (CNS) during brain injuries and neurodegenerative diseases.


Assuntos
Transtorno Depressivo Maior , Alucinógenos , Doenças Neurodegenerativas , Neurologia , Psiquiatria , Transtornos Relacionados ao Uso de Substâncias , Transtorno Depressivo Maior/tratamento farmacológico , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Psilocibina/uso terapêutico
16.
J Neurochem ; 162(1): 9-23, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34729786

RESUMO

Psychedelic drugs are gaining attention from the scientific community as potential new compounds for the treatment of psychiatric diseases such as mood and substance use disorders. The 5-HT2A receptor has been identified as the main molecular target, and early studies pointed to an effect on the expression of neuroplasticity genes. Analysing RNA-seq data from the prefrontal cortex of rats chronically treated with lysergic acid diethylamide (LSD), we describe the psychedelic-induced rewiring of gene co-expression networks, which become less centralised but more complex, with an overall increase in signalling entropy typical of highly plastic systems. Intriguingly, signalling entropy mirrors, at the molecular level, the increased brain entropy reported through neuroimaging studies in human, suggesting the underlying mechanisms of higher-order phenomena. Moreover, from the analysis of network topology, we identify potential transcriptional regulators and propose the involvement of different cell types in psychedelics' activity.


Assuntos
Alucinógenos , Dietilamida do Ácido Lisérgico , Animais , Encéfalo , Entropia , Alucinógenos/metabolismo , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Dietilamida do Ácido Lisérgico/metabolismo , Dietilamida do Ácido Lisérgico/farmacologia , Córtex Pré-Frontal/metabolismo , Ratos
17.
J Man Manip Ther ; 30(2): 124-131, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34657580

RESUMO

BACKGROUND: Male genital pain, which is neither related to genitourinary nor other obvious pathology, is an uncommon symptom in male patients and not frequently treated using manual therapy. The purpose of this case study is to describe a clinical reasoning process in combination with anatomy-based differential diagnosis and manual treatment for genital pain. CASE DESCRIPTION: A male patient with a 3-week acute onset of genital pain was hospitalized and referred for evaluation and treatment after unsuccessful treatment with medication and acupuncture. Clinical examination was performed indicating a possible nerve entrapment followed by interventions of ligamentous articular strain, high-velocity low-amplitude (HVLA) manipulation, and strain- and counterstain, coupled with soft tissue stretching to lumbar and inguinal areas to address a possible lumbar referral potentially from L1 and/or ilioinguinal nerve entrapment. OUTCOMES: After 4 consecutive days of manipulative treatment, pain decreased from 9/10 to 0/10 and the Barthel Index improved from 50 to 95. A 6-month follow-up revealed complete resolution of symptoms with no recurrence. DISCUSSION: This case illustrates that a detailed history and examination along with a reasoned diagnostic process to determine an appropriate intervention strategy may improve patient care using manual therapy techniques. CONCLUSION: By utilizing a deductive reasoning process related to the penile area, clinicians may better apply manual therapy techniques for successful treatment.


Assuntos
Terapia por Acupuntura , Manipulações Musculoesqueléticas , Seguimentos , Virilha , Humanos , Masculino , Dor
18.
Sci Rep ; 11(1): 19714, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611182

RESUMO

Serotonin 5-HT2 receptors are expressed in many tissues and play important roles in biological processes. Although the 5-HT2A receptor is primarily known for its role in central nervous system, it is also expressed in peripheral tissues. We have found that 5-HT2A receptor antagonists inhibit human subcutaneous primary adipocyte differentiation. We also show that siRNA knockdown of the 5-HT2A receptor blocks differentiation. Using gene expression analysis in combination with receptor antagonists we found that activity of 5-HT2A receptors is necessary very early in the differentiation process to mediate expression of adipogenic genes, including peroxisome proliferator-activated receptor gamma (ppar-γ), adipocyte protein 2 (aP2), adiponectin, and serine/threonine-protein kinase 1 (sgk1). We show here for the first time that 5-HT2A receptor activity is necessary for differentiation of human primary subcutaneous preadipocytes to adipocytes, and that 5-HT2A receptor activity mediates key genes related to adipogenesis during this process. Importantly, this work contributes to a greater understanding of the adipocyte differentiation process, as well as to the role of 5-HT2A receptors in peripheral tissues, and may be relevant to the development of novel therapeutic strategies targeting this receptor for the treatment of obesity related diseases.


Assuntos
Adipócitos/citologia , Adipócitos/metabolismo , Adipogenia , Diferenciação Celular , Regulação da Expressão Gênica , Receptor 5-HT2A de Serotonina/metabolismo , Adipócitos/efeitos dos fármacos , Adipogenia/genética , Animais , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Relação Dose-Resposta a Droga , Humanos , Modelos Biológicos , RNA Mensageiro/genética , Receptor 5-HT2A de Serotonina/genética , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia
19.
J Lipid Res ; 62: 100081, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33933440

RESUMO

Nuclear receptors are transcription factors that bind lipids, an event that induces a structural conformation of the receptor that favors interaction with transcriptional coactivators. The nuclear receptor steroidogenic factor-1 (SF-1, NR5A1) binds the signaling phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), and our previous crystal structures showed how the phosphoinositide headgroups regulate SF-1 function. However, what role the acyl chains play in regulating SF-1 structure remains unaddressed. Here, we used X-ray crystallography with in vitro binding and functional assays to examine how the acyl chains of PIP3 regulate human SF-1 ligand-binding domain structure and function. Altering acyl chain length and unsaturation regulates apparent binding of all tested phosphoinositides to SF-1. Mass spectrometry-based lipidomics data suggest C16 and C18 phospholipids preferentially associate with SF-1 expressed ectopically in bacteria. We then solved the 2.5 Å crystal structure of SF-1 bound to dioleoyl PIP3(18:1/18:1) to compare it with a matched structure of SF-1 bound to dipalmitoyl PIP3(16:0/16:0). The dioleoyl-bound structure was severely disordered in a specific SF-1 region associated with pathogenic human polymorphisms and within the coactivator-binding region critical for SF-1 function while inducing increased sensitivity to protease digestion in solution. Validating these structural observations, in vitro functional studies showed dioleoyl PIP3 induced 6-fold poorer affinity of a peroxisome proliferator-activated receptor gamma coactivator 1-alpha coactivator peptide for SF-1 compared with dipalmitoyl PIP3. Together, these data suggest the chemical nature of the phosphoinositide acyl chains controls the ordered state of specific, clinically important structural regions in SF-1, regulating SF-1 function in vitro.


Assuntos
Fosfatidilinositóis
20.
ACS Pharmacol Transl Sci ; 4(2): 488-502, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33860179

RESUMO

Psychedelic drugs can exert potent anti-inflammatory effects. However, anti-inflammatory effects do not appear to correlate with behavioral activity, suggesting different underlying mechanisms. We hypothesized that the distinct structural features of psychedelics underlie functionally selective mechanisms at the target 5-HT2A receptor to elicit maximal anti-inflammatory effects. In order to test this hypothesis, we developed a new rat-based screening platform for allergic asthma. Next, we investigated 21 agonists at the 5-HT2A receptor from the three primary chemotypes (phenylalkylamine, ergoline, and tryptamine) for their ability to prevent airways hyperresponsiveness as a measure of pulmonary inflammation. Furthermore, we assessed each drug for in vitro activation of the canonical signaling pathway, calcium mobilization, from the 5-HT2A receptor. We find that the drug 2,5-dimethoxyphenethylamine (2C-H) represents the pharmacophore for anti-inflammatory activity and identify structural modifications that are either permissive or detrimental to anti-inflammatory activity. Additionally, there is no correlation between the ability of a particular psychedelic to activate intracellular calcium mobilization and to prevent the symptoms of asthma or with behavioral potencies. Our results support the notions that specific structural features mediate functional selectivity underlying anti-inflammatory activity and that relevant receptor activated pathways necessary for anti-inflammatory activity are different from canonical signaling pathways. Our results inform on the nature of interactions between ligands at the 5-HT2A receptor as they relate to anti-inflammatory activity and are crucial for the development of new 5-HT2A receptor agonists for anti-inflammatory therapeutics in the clinic that may be devoid of behavioral activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA